期刊文献+

The Rupture Degree of <i>k</i>-Uniform Linear Hypergraph

The Rupture Degree of <i>k</i>-Uniform Linear Hypergraph
下载PDF
导出
摘要 We employ graph parameter, the rupture degree, to measure the vulnerability of <em>k</em>-uniform hypergraph <em>G<sup>k</sup></em>. For the k-uniform hypergraph <em>G<sup>k</sup></em> underlying a non-complete graph <em>G</em> = (<em>V</em>, <em>E</em>), its rupture degree <em>r</em>(<em>G<sup>k</sup></em>) is defined as <em>r</em>(<em>G<sup>k</sup></em>) = max{<em>ω</em>(<em>G<sup>k</sup></em> - <em>X</em>) - |<em>X</em>| - <em>m</em>(<em>G<sup>k</sup></em> - <em>X</em>): <em>X</em> <span style="white-space:nowrap;">&#8834;</span> <em>V</em>(<em>G<sup>k</sup></em>), <em>ω</em>(<em>G<sup>k</sup></em> - <em>X</em>) > 1}, where <em>X</em> is a cut set (or destruction strategy) of <em>G<sup>k</sup></em>, <em>ω</em>(<em>G<sup>k</sup></em> - <em>X</em>) and <em>m</em>(<em>G<sup>k</sup></em> - <em>X</em>) denote the number of components and the order of a largest component in <em>G<sup>k</sup></em> - <em>X</em>, respectively. It is shown that this parameter can be used to measure the vulnerability of networks. In this paper, the rupture degrees of several specific classes of <em>k</em>-uniform hypergraph are determined. We employ graph parameter, the rupture degree, to measure the vulnerability of <em>k</em>-uniform hypergraph <em>G<sup>k</sup></em>. For the k-uniform hypergraph <em>G<sup>k</sup></em> underlying a non-complete graph <em>G</em> = (<em>V</em>, <em>E</em>), its rupture degree <em>r</em>(<em>G<sup>k</sup></em>) is defined as <em>r</em>(<em>G<sup>k</sup></em>) = max{<em>ω</em>(<em>G<sup>k</sup></em> - <em>X</em>) - |<em>X</em>| - <em>m</em>(<em>G<sup>k</sup></em> - <em>X</em>): <em>X</em> <span style="white-space:nowrap;">&#8834;</span> <em>V</em>(<em>G<sup>k</sup></em>), <em>ω</em>(<em>G<sup>k</sup></em> - <em>X</em>) > 1}, where <em>X</em> is a cut set (or destruction strategy) of <em>G<sup>k</sup></em>, <em>ω</em>(<em>G<sup>k</sup></em> - <em>X</em>) and <em>m</em>(<em>G<sup>k</sup></em> - <em>X</em>) denote the number of components and the order of a largest component in <em>G<sup>k</sup></em> - <em>X</em>, respectively. It is shown that this parameter can be used to measure the vulnerability of networks. In this paper, the rupture degrees of several specific classes of <em>k</em>-uniform hypergraph are determined.
作者 Ning Zhao Ning Zhao(Department of Mathematics and Statistics, Qinghai Minzu University, Xining, China)
出处 《Applied Mathematics》 2021年第7期556-562,共7页 应用数学(英文)
关键词 The Rupture Degree HYPERGRAPH <i>k</i>-Uniform Linear Hypergraph The Rupture Degree Hypergraph <i>k</i>-Uniform Linear Hypergraph
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部