期刊文献+

Solving Riccati-Type Nonlinear Differential Equations with Novel Artificial Neural Networks

Solving Riccati-Type Nonlinear Differential Equations with Novel Artificial Neural Networks
下载PDF
导出
摘要 In this study we investigate neural network solutions to nonlinear differential equations of Ricatti-type. We employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but avoid the standard back-propagation algorithm for updating the intrinsic weights. Our objective is to minimize an error, which is a function of the network parameters i.e., the weights and biases. Once the weights of the neural network are obtained by our systematic procedure, we need not adjust all the parameters in the network, as postulated by many researchers before us, in order to achieve convergence. We only need to fine-tune our biases which are fixed to lie in a certain given range, and convergence to a solution with an acceptable minimum error is achieved. This greatly reduces the computational complexity of the given problem. We provide two important ODE examples, the first is a Ricatti type differential equation to which the procedure is applied, and this gave us perfect agreement with the exact solution. The second example however provided us with only an acceptable approximation to the exact solution. Our novel artificial neural networks procedure has demonstrated quite clearly the function approximation capabilities of ANN in the solution of nonlinear differential equations of Ricatti type. In this study we investigate neural network solutions to nonlinear differential equations of Ricatti-type. We employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but avoid the standard back-propagation algorithm for updating the intrinsic weights. Our objective is to minimize an error, which is a function of the network parameters i.e., the weights and biases. Once the weights of the neural network are obtained by our systematic procedure, we need not adjust all the parameters in the network, as postulated by many researchers before us, in order to achieve convergence. We only need to fine-tune our biases which are fixed to lie in a certain given range, and convergence to a solution with an acceptable minimum error is achieved. This greatly reduces the computational complexity of the given problem. We provide two important ODE examples, the first is a Ricatti type differential equation to which the procedure is applied, and this gave us perfect agreement with the exact solution. The second example however provided us with only an acceptable approximation to the exact solution. Our novel artificial neural networks procedure has demonstrated quite clearly the function approximation capabilities of ANN in the solution of nonlinear differential equations of Ricatti type.
作者 Roseline N. Okereke Olaniyi S. Maliki Roseline N. Okereke;Olaniyi S. Maliki(Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Nigeria)
出处 《Applied Mathematics》 2021年第10期919-930,共12页 应用数学(英文)
关键词 Ricatti ODE MLPNN GRBF Network Training MathCAD 14 Ricatti ODE MLPNN GRBF Network Training MathCAD 14
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部