期刊文献+

Existence of Entropy Solution for Degenerate Parabolic-Hyperbolic Problem Involving p(x)-Laplacian with Neumann Boundary Condition

Existence of Entropy Solution for Degenerate Parabolic-Hyperbolic Problem Involving p(x)-Laplacian with Neumann Boundary Condition
下载PDF
导出
摘要 We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution. We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
作者 Mohamed Karimou Gazibo Duni Yegbonoma Frédéric Zongo Mohamed Karimou Gazibo;Duni Yegbonoma Frédéric Zongo(Laboratoire de Mathmatiques Fondamentales et Applications (LMFA), Dpartement de Mathmatiques, cole Normale Suprieure, Universit Abdou Moumouni de Niamey, Niamey, Niger;Laboratoire Interdisciplinaire de Recherche en Sciences Appliques (LIRSA), cole Normale Suprieure, Burkina Faso)
出处 《Applied Mathematics》 2024年第7期455-463,共9页 应用数学(英文)
关键词 Lebesgue and Sobolev Spaces with Variable Exponent Weak Solution Entropy Solution Degenerate Parabolic-Hyperbolic Equation Conservation Law Leray Lions Type Operator Neumann Boundary Condition Existence Result Lebesgue and Sobolev Spaces with Variable Exponent Weak Solution Entropy Solution Degenerate Parabolic-Hyperbolic Equation Conservation Law Leray Lions Type Operator Neumann Boundary Condition Existence Result
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部