期刊文献+

Accurate Extraction of Effective Gate Resistance in RF MOSFET

Accurate Extraction of Effective Gate Resistance in RF MOSFET
下载PDF
导出
摘要 This paper describes the gate electrode resistance of MOSFET and non-quasi-static (NQS) effect for RF operation. The vertical current paths between the silicide layer and poly-silicon are considered in the gate electrode. The vertical current paths are not effective in long-channel devices, but become more significant in short-channel devices. The gate resistance including vertical current paths can reproduce the practical RF characteristics well. By careful separation of the above gate electrode resistance and the NQS effect, the small-signal gate-source admittance can be analyzed with 130-nm CMOS process. Elmore constant (κ) of the NQS gate-source resistance is about five for long-channel devices, while it decreases down to about three for short-channel devices. This paper describes the gate electrode resistance of MOSFET and non-quasi-static (NQS) effect for RF operation. The vertical current paths between the silicide layer and poly-silicon are considered in the gate electrode. The vertical current paths are not effective in long-channel devices, but become more significant in short-channel devices. The gate resistance including vertical current paths can reproduce the practical RF characteristics well. By careful separation of the above gate electrode resistance and the NQS effect, the small-signal gate-source admittance can be analyzed with 130-nm CMOS process. Elmore constant (κ) of the NQS gate-source resistance is about five for long-channel devices, while it decreases down to about three for short-channel devices.
出处 《Circuits and Systems》 2015年第5期143-151,共9页 电路与系统(英文)
关键词 MOSFET NQS Effect GATE ELECTRODE Resistance Elmore CONSTANT MOSFET NQS Effect Gate Electrode Resistance Elmore Constant
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部