期刊文献+

Current Mode Universal Filter Using Single Current Controlled Differential Difference Current Conveyor Transconductance Amplifier

Current Mode Universal Filter Using Single Current Controlled Differential Difference Current Conveyor Transconductance Amplifier
下载PDF
导出
摘要 This research paper contains a new electronically tunable current-mode biquadratic universal filter using a new active building block;current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA). The proposed filter provides the following important and desirable features: (i) One can use only one CCDDCCTA and two capacitors;(ii) One can get low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) current responses from the same configuration without any alteration;(iii) Passive components are grounded, which ease the integrated circuit implementation;(iv) Responses are electronically tunable;and (v) Sensitivity is low. Moreover, the non-ideality analysis shows that the parasitic passive components can be compensated for the proposed circuit. The functionality of the design is verified through SPICE simulations using 0.25 μm CMOS TSMC technology process parameters. Simulation result agrees well with the theoretical analysis. This research paper contains a new electronically tunable current-mode biquadratic universal filter using a new active building block;current controlled differential difference current conveyor transconductance amplifier (CCDDCCTA). The proposed filter provides the following important and desirable features: (i) One can use only one CCDDCCTA and two capacitors;(ii) One can get low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) current responses from the same configuration without any alteration;(iii) Passive components are grounded, which ease the integrated circuit implementation;(iv) Responses are electronically tunable;and (v) Sensitivity is low. Moreover, the non-ideality analysis shows that the parasitic passive components can be compensated for the proposed circuit. The functionality of the design is verified through SPICE simulations using 0.25 μm CMOS TSMC technology process parameters. Simulation result agrees well with the theoretical analysis.
出处 《Circuits and Systems》 2015年第10期224-236,共13页 电路与系统(英文)
关键词 CURRENT Mode Analog FILTER Universal FILTER CURRENT Controlled DIFFERENTIAL DIFFERENCE CURRENT CONVEYOR TRANSCONDUCTANCE Amplifier (CCDDCCTA) Monte-Carlo Analysis Current Mode Analog Filter Universal Filter Current Controlled Differential Difference Current Conveyor Transconductance Amplifier (CCDDCCTA) Monte-Carlo Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部