期刊文献+

An 8 Bit 0.8 GS/s 8.352 mW Modified Successive Approximation Register Based Analog to Digital Converter in 65 nm CMOS

An 8 Bit 0.8 GS/s 8.352 mW Modified Successive Approximation Register Based Analog to Digital Converter in 65 nm CMOS
下载PDF
导出
摘要 We propose a new approach in reducing the power consumption of the successive approximation register Analog to Digital Converter (SAR-ADC) by changing the convergence algorithm of the Digital to Analog converter (DAC) input of the SAR-ADC. Different search algorithms such as binary search tree, moving binary search tree (BST), least significant bit shifter (LSB), adaptive algorithm and split-register moving BST algorithm are designed and analyzed for faster convergence of the DAC input. In this paper, we design a 0.8 GS/s, 8 bit (Effective number of bits (ENOB)—7.42), 8.352 mW SAR ADC with a proposed moving BST algorithm in 65 nm CMOS which ranks amongst the current state of the art ADCs with a FOM 65.25 fJ/step. We propose a new approach in reducing the power consumption of the successive approximation register Analog to Digital Converter (SAR-ADC) by changing the convergence algorithm of the Digital to Analog converter (DAC) input of the SAR-ADC. Different search algorithms such as binary search tree, moving binary search tree (BST), least significant bit shifter (LSB), adaptive algorithm and split-register moving BST algorithm are designed and analyzed for faster convergence of the DAC input. In this paper, we design a 0.8 GS/s, 8 bit (Effective number of bits (ENOB)—7.42), 8.352 mW SAR ADC with a proposed moving BST algorithm in 65 nm CMOS which ranks amongst the current state of the art ADCs with a FOM 65.25 fJ/step.
出处 《Circuits and Systems》 2015年第12期280-291,共12页 电路与系统(英文)
关键词 MOVING BINARY Search TREE SAR-ADC Low Power Moving Binary Search Tree SAR-ADC Low Power
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部