期刊文献+

Efficient FPGA implementation of AES 128 bit for IEEE 802.16e mobile WiMax standards

Efficient FPGA implementation of AES 128 bit for IEEE 802.16e mobile WiMax standards
下载PDF
导出
摘要 In an advancement of communication field, wireless technology plays a predominant role in data transmission. In the timeline of wireless domain, Wi-Fi, Bluetooth, zigbee etc are some of the standards, which are being used in today’s wireless medium. In addition, the WiMax is introduced by IEEE in IEEE 802.16 for long distance communication, specifically 802.16e standard for mobile WiMax. It is an acronym of Worldwide Interoperability for Microwave Access. It is to be deliver wireless transmission with high quality of service in a secured environment. Since, security becomes dominant design aspect of every communication, a new technique has been proposed in wireless environment. Privacy across the network and access control management is the goal in the predominant aspects in the WiMax protocol. Especially, MAC sub layer should be evaluated in the security architecture. It has been proposed on cryptography algorithm AES that require high cost. Under this scenario, we present the optimized AES 128 bit counter mode security algorithm for MAC layer of 802.16e standards. To design a efficient MAC layer, we adopt the modification of security layers data handling process. As per the efficient design strategy, the power and speed are the dominant factors in mobile device. Since we concentrate mobile WiMax, efficient design is needed for MAC Security layer. Our proposed model incorporates the modification of AES algorithm. The design has been implemented in Xilinx virtex5 device and power has been analyzed using XPower analyzer. This proposed system consumes 41% less power compare to existing system. In an advancement of communication field, wireless technology plays a predominant role in data transmission. In the timeline of wireless domain, Wi-Fi, Bluetooth, zigbee etc are some of the standards, which are being used in today’s wireless medium. In addition, the WiMax is introduced by IEEE in IEEE 802.16 for long distance communication, specifically 802.16e standard for mobile WiMax. It is an acronym of Worldwide Interoperability for Microwave Access. It is to be deliver wireless transmission with high quality of service in a secured environment. Since, security becomes dominant design aspect of every communication, a new technique has been proposed in wireless environment. Privacy across the network and access control management is the goal in the predominant aspects in the WiMax protocol. Especially, MAC sub layer should be evaluated in the security architecture. It has been proposed on cryptography algorithm AES that require high cost. Under this scenario, we present the optimized AES 128 bit counter mode security algorithm for MAC layer of 802.16e standards. To design a efficient MAC layer, we adopt the modification of security layers data handling process. As per the efficient design strategy, the power and speed are the dominant factors in mobile device. Since we concentrate mobile WiMax, efficient design is needed for MAC Security layer. Our proposed model incorporates the modification of AES algorithm. The design has been implemented in Xilinx virtex5 device and power has been analyzed using XPower analyzer. This proposed system consumes 41% less power compare to existing system.
作者 P. Rajasekar Dr. H. Mangalam P. Rajasekar;Dr. H. Mangalam(Department of Electronics and Communication Engineering, Kathir College of Engineering, Coimbatore, India;Department of Electronics and Communication Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, India)
出处 《Circuits and Systems》 2016年第4期371-380,共10页 电路与系统(英文)
关键词 DECRYPTION FPGA implementation Electronic code book mode Galois Field Low Power Architecture : AES encryption decryption FPGA implementation Electronic code book mode Galois Field Low Power Architecture : AES encryption
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部