期刊文献+

Universal Band Pass Sampling Algorithm for Integration of Multiple Wireless Technologies Using Software Defined Radio Platform

Universal Band Pass Sampling Algorithm for Integration of Multiple Wireless Technologies Using Software Defined Radio Platform
下载PDF
导出
摘要 Software Defined Radio (SDR) architecture allows us to integrate different mobile technologies using common hardware but with different software modules. To achieve this, we need to keep the signal in digital form for as much portion of the circuitry as possible, so that the implementation could be carried out by programmable digital processors. For this purpose, the incoming radio frequency (RF) signal is down converted to baseband spectrum using band pass sampling method. Research works carried out so far in this field have developed a few algorithms for band pass sampling. But, these algorithms are not much useful for most of the mobile communication systems and they use complex methodology for computing the sampling frequency values. In order to use the SDR platform to integrate all current wireless technologies, an efficient, cost effective and less complex algorithm that can be labelled as universal band pass sampling algorithm is developed in this paper for multiple mobile systems. This algorithm is based on a novel idea of inserting guard bands between the signals which reduces the design complexities of perfect ADC and sharp cut off filters. Using this algorithm, valid sampling frequency ranges and corresponding IF values are calculated for down converting RF signals. The algorithm is tested for six RF signals of different wireless technologies which are integrated and simultaneously down converted using SDR based front end receiver and thus the system multiplies the base station capacity by a factor of six. The simulation results are obtained and shown in this paper which proves that the algorithm developed works well for most of the wireless technologies. Software Defined Radio (SDR) architecture allows us to integrate different mobile technologies using common hardware but with different software modules. To achieve this, we need to keep the signal in digital form for as much portion of the circuitry as possible, so that the implementation could be carried out by programmable digital processors. For this purpose, the incoming radio frequency (RF) signal is down converted to baseband spectrum using band pass sampling method. Research works carried out so far in this field have developed a few algorithms for band pass sampling. But, these algorithms are not much useful for most of the mobile communication systems and they use complex methodology for computing the sampling frequency values. In order to use the SDR platform to integrate all current wireless technologies, an efficient, cost effective and less complex algorithm that can be labelled as universal band pass sampling algorithm is developed in this paper for multiple mobile systems. This algorithm is based on a novel idea of inserting guard bands between the signals which reduces the design complexities of perfect ADC and sharp cut off filters. Using this algorithm, valid sampling frequency ranges and corresponding IF values are calculated for down converting RF signals. The algorithm is tested for six RF signals of different wireless technologies which are integrated and simultaneously down converted using SDR based front end receiver and thus the system multiplies the base station capacity by a factor of six. The simulation results are obtained and shown in this paper which proves that the algorithm developed works well for most of the wireless technologies.
作者 Sriramachandra Murthy Budaraju Bhagyaveni Marcharla Anjaneyulu Sriramachandra Murthy Budaraju;Bhagyaveni Marcharla Anjaneyulu(Department of Electronics and Communication Engineering, College of Engineering-Guindy, Anna University, Chennai, India)
出处 《Circuits and Systems》 2016年第4期497-505,共9页 电路与系统(英文)
关键词 Band Pass Filter Radio Frequency Reconfigurable Architecture Sampling Software Defined Radio Wireless Communication Band Pass Filter Radio Frequency Reconfigurable Architecture Sampling Software Defined Radio Wireless Communication
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部