摘要
The general problem faced in the field of Wireless Multimedia Sensor Networks (WMSNs) is congestion. The most common method in the area of WMSNs to minimize congestion is traffic control. Quality Of Service (QOS) is widely used in WMSNs to guarantee preferential service for critical applications by controlling end-to-end delay, reducing data loss and by providing adequate bandwidth. The present work is on Probabilistic QOS Aware Congestion Control (PQACC) which employs probabilistic method based congestion prediction and priority based data transmission rate adjustment, where inelastic real-time traffic and elastic non-real-time traffic are treated separately. Using the present PQACC approach, average throughput, average source-to-sink delay and average packet loss probability are improved by 9%, 10.33% and 16.03% compared to EWPBRC and achieved 5.97%, 7.05% and 11.69% improvement compared to FEWPBRC. Simulation result reveals that, congestion is effectively predicted, controlled and provides necessary level of QOS in terms of delay, throughput and packet loss, hence making this approach possible in mission critical applications.
The general problem faced in the field of Wireless Multimedia Sensor Networks (WMSNs) is congestion. The most common method in the area of WMSNs to minimize congestion is traffic control. Quality Of Service (QOS) is widely used in WMSNs to guarantee preferential service for critical applications by controlling end-to-end delay, reducing data loss and by providing adequate bandwidth. The present work is on Probabilistic QOS Aware Congestion Control (PQACC) which employs probabilistic method based congestion prediction and priority based data transmission rate adjustment, where inelastic real-time traffic and elastic non-real-time traffic are treated separately. Using the present PQACC approach, average throughput, average source-to-sink delay and average packet loss probability are improved by 9%, 10.33% and 16.03% compared to EWPBRC and achieved 5.97%, 7.05% and 11.69% improvement compared to FEWPBRC. Simulation result reveals that, congestion is effectively predicted, controlled and provides necessary level of QOS in terms of delay, throughput and packet loss, hence making this approach possible in mission critical applications.
作者
Muthuselvi Mayandi
Kavitha Velayudhan Pillai
Muthuselvi Mayandi;Kavitha Velayudhan Pillai(Department of Computer Science and Engineering, University College of Engineering Nagercoil, Anna University, Chennai, India;Department of Computer Science and Engineering, University College of Engineering Kancheepuram, Anna University, Chennai, India)