期刊文献+

Probabilistic QOS Aware Congestion Control in Wireless Multimedia Sensor Networks

Probabilistic QOS Aware Congestion Control in Wireless Multimedia Sensor Networks
下载PDF
导出
摘要 The general problem faced in the field of Wireless Multimedia Sensor Networks (WMSNs) is congestion. The most common method in the area of WMSNs to minimize congestion is traffic control. Quality Of Service (QOS) is widely used in WMSNs to guarantee preferential service for critical applications by controlling end-to-end delay, reducing data loss and by providing adequate bandwidth. The present work is on Probabilistic QOS Aware Congestion Control (PQACC) which employs probabilistic method based congestion prediction and priority based data transmission rate adjustment, where inelastic real-time traffic and elastic non-real-time traffic are treated separately. Using the present PQACC approach, average throughput, average source-to-sink delay and average packet loss probability are improved by 9%, 10.33% and 16.03% compared to EWPBRC and achieved 5.97%, 7.05% and 11.69% improvement compared to FEWPBRC. Simulation result reveals that, congestion is effectively predicted, controlled and provides necessary level of QOS in terms of delay, throughput and packet loss, hence making this approach possible in mission critical applications. The general problem faced in the field of Wireless Multimedia Sensor Networks (WMSNs) is congestion. The most common method in the area of WMSNs to minimize congestion is traffic control. Quality Of Service (QOS) is widely used in WMSNs to guarantee preferential service for critical applications by controlling end-to-end delay, reducing data loss and by providing adequate bandwidth. The present work is on Probabilistic QOS Aware Congestion Control (PQACC) which employs probabilistic method based congestion prediction and priority based data transmission rate adjustment, where inelastic real-time traffic and elastic non-real-time traffic are treated separately. Using the present PQACC approach, average throughput, average source-to-sink delay and average packet loss probability are improved by 9%, 10.33% and 16.03% compared to EWPBRC and achieved 5.97%, 7.05% and 11.69% improvement compared to FEWPBRC. Simulation result reveals that, congestion is effectively predicted, controlled and provides necessary level of QOS in terms of delay, throughput and packet loss, hence making this approach possible in mission critical applications.
作者 Muthuselvi Mayandi Kavitha Velayudhan Pillai Muthuselvi Mayandi;Kavitha Velayudhan Pillai(Department of Computer Science and Engineering, University College of Engineering Nagercoil, Anna University, Chennai, India;Department of Computer Science and Engineering, University College of Engineering Kancheepuram, Anna University, Chennai, India)
出处 《Circuits and Systems》 2016年第9期2081-2094,共14页 电路与系统(英文)
关键词 Congestion Control WMSN Traffic Control QOS Probabilistic Method Inelastic Traffic Elastic Traffic Congestion Control WMSN Traffic Control QOS Probabilistic Method Inelastic Traffic Elastic Traffic
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部