期刊文献+

Improved NCTF Control Method for a Two-Mass Rotary Positioning Systems

Improved NCTF Control Method for a Two-Mass Rotary Positioning Systems
下载PDF
导出
摘要 This paper describes an improvement of the existing nominal characteristic trajectory following (NCTF) as a practical control method for a two-mass rotary point-to-point (PTP) positioning systems. Generally, the NCTF controller consists of a nominal characteristic trajectory (NCT) and a PI compensator. A notch filter is added as a part of the compensator to eliminate the vibration due to the mechanical resonance of the plant. The objective of the NCTF controller is to make the object motion follow the NCT and end at its origin. The NCTF controller is designed based on a simple open-loop experiment of the object. The parameters identification and an exact model of the plant are not necessary for controller design. The performance response of improved NCTF controller is evaluated and discussed based on results of simulation. The effect of the design parameters on the robustness of the NCTF controller to inertia and friction variations is evaluated and compared with conventional PID controller. The results show that the improved NCTF controller has a better positioning performance and is much more robust than the PID controller. This paper describes an improvement of the existing nominal characteristic trajectory following (NCTF) as a practical control method for a two-mass rotary point-to-point (PTP) positioning systems. Generally, the NCTF controller consists of a nominal characteristic trajectory (NCT) and a PI compensator. A notch filter is added as a part of the compensator to eliminate the vibration due to the mechanical resonance of the plant. The objective of the NCTF controller is to make the object motion follow the NCT and end at its origin. The NCTF controller is designed based on a simple open-loop experiment of the object. The parameters identification and an exact model of the plant are not necessary for controller design. The performance response of improved NCTF controller is evaluated and discussed based on results of simulation. The effect of the design parameters on the robustness of the NCTF controller to inertia and friction variations is evaluated and compared with conventional PID controller. The results show that the improved NCTF controller has a better positioning performance and is much more robust than the PID controller.
机构地区 不详
出处 《Intelligent Control and Automation》 2011年第4期351-363,共13页 智能控制与自动化(英文)
关键词 IMPROVED NCTF Two-Mass System NOTCH FILTER Vibration Simulation Improved NCTF Two-Mass System Notch Filter Vibration Simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部