摘要
This paper focuses on the study and the characterization of stability regions of discrete time systems with a time varying state delay subjected to actuator saturation through anti-windup strategies. Delay-dependent stability conditions are stated in the local as well as global context. An optimization procedure to maximize the estimate of domain of attraction is given. The proposed technique is illustrated by means of numerical examples.
This paper focuses on the study and the characterization of stability regions of discrete time systems with a time varying state delay subjected to actuator saturation through anti-windup strategies. Delay-dependent stability conditions are stated in the local as well as global context. An optimization procedure to maximize the estimate of domain of attraction is given. The proposed technique is illustrated by means of numerical examples.