期刊文献+

Adaptive Control for a Class of Systems with Output Deadzone Nonlinearity

Adaptive Control for a Class of Systems with Output Deadzone Nonlinearity
下载PDF
导出
摘要 This paper presents a continuous-time adaptive control scheme for systems with uncertain non-symmetrical deadzone nonlinearity located at the output of a plant. An adaptive inverse function is developed and used in conjunction with a robust adaptive controller to reduce the effect of deadzone nonlinearity. The deadzone inverse function is also implemented in continuous time, and an adaptive update law is designed to estimate the deadzone parameters. The adaptive output deadzone inverse controller is smoothly differentiable and is combined with a robust adaptive nonlinear controller to ensure robustness and boundedness of all the states of the system as well as the output signal. The mismatch between the ideal deadzone inverse function and our proposed implantation is treated as a disturbance that can be upper bounded by a polynomial in the system states. The overall stability of the closed-loop system is proven by using Lyapunov method, and simulations confirm the efficacy of the control methodology. This paper presents a continuous-time adaptive control scheme for systems with uncertain non-symmetrical deadzone nonlinearity located at the output of a plant. An adaptive inverse function is developed and used in conjunction with a robust adaptive controller to reduce the effect of deadzone nonlinearity. The deadzone inverse function is also implemented in continuous time, and an adaptive update law is designed to estimate the deadzone parameters. The adaptive output deadzone inverse controller is smoothly differentiable and is combined with a robust adaptive nonlinear controller to ensure robustness and boundedness of all the states of the system as well as the output signal. The mismatch between the ideal deadzone inverse function and our proposed implantation is treated as a disturbance that can be upper bounded by a polynomial in the system states. The overall stability of the closed-loop system is proven by using Lyapunov method, and simulations confirm the efficacy of the control methodology.
出处 《Intelligent Control and Automation》 2015年第4期215-228,共14页 智能控制与自动化(英文)
关键词 Adaptive INVERSE Control OUTPUT DEADZONE HARD NONLINEARITY Adaptive Inverse Control Output Deadzone Hard Nonlinearity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部