摘要
Starting with the original sub-quantum dark energy model, the current accelerating phase of the evolution of the universe is considered by constructing most economical cosmic models that use just general relativity and some dominating quantum effects associated with the probabilistic description of quantum physics. Two of such models are explicitly considered. They support an interpretation of dark energy in terms of the entangled energy of the universe. The model only violates the dominant energy condition quantum mechanically, that is by an amount given by the entanglement energy density, and gives rise to an asymptotically anti-de Sitter wormhole that becomes an asymptotically flat wormhole in the classical limit. It is shown that for most cosmic solutions such a wormhole does not predict any big trip phenomenon when it accretes phantom like energy.
Starting with the original sub-quantum dark energy model, the current accelerating phase of the evolution of the universe is considered by constructing most economical cosmic models that use just general relativity and some dominating quantum effects associated with the probabilistic description of quantum physics. Two of such models are explicitly considered. They support an interpretation of dark energy in terms of the entangled energy of the universe. The model only violates the dominant energy condition quantum mechanically, that is by an amount given by the entanglement energy density, and gives rise to an asymptotically anti-de Sitter wormhole that becomes an asymptotically flat wormhole in the classical limit. It is shown that for most cosmic solutions such a wormhole does not predict any big trip phenomenon when it accretes phantom like energy.