期刊文献+

What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse

What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse
下载PDF
导出
摘要 We reason that in quantum cosmology there are two kinds of energy. The first is the ordinary energy of the quantum particle which we can measure. The second is the dark energy of the quantum wave by quantum duality. Because measurement collapses the Hawking-Hartle quantum wave of the cosmos, dark energy cannot be detected or measured in any conventional manner. The quantitative results are confirmed using some exact solutions for the hydrogen atom. In particular the ordinary energy of the quantum particle is given by E(0) = (/2)(mc2) where is Hardy’s probability of quantum entanglement, =( - 1)/2 is the Hausdorff dimension of the zero measure thin Cantor set modeling the quantum particle, while the dark energy of the quantum wave is given by E(D) = (5/2)(mc2) where is the Hausdorff dimension of the positive measure thick empty Cantor set modeling the quantum wave and the factor five (5) is the Kaluza-Klein spacetime dimension to which the measure zero thin Cantor set D(0) = (0,) and the thick empty set D(-1) = (1,) must be lifted to give the five dimensional analogue sets namely and 5 needed for calculating the energy density E(0) and E(D) which together add to Einstein’s maximal total energy density E(total) = E(0) + E(D) = mc2 = E(Einstein). These results seem to be in complete agreement with the WMAP, supernova and recent Planck cosmic measurement as well as the 2005 quantum gravity experiments of V. V. Nesvizhersky and his associates. It also confirms the equivalence of wormhole solutions of Einstein’s equations and quantum entanglement by scaling the Planck scale. We reason that in quantum cosmology there are two kinds of energy. The first is the ordinary energy of the quantum particle which we can measure. The second is the dark energy of the quantum wave by quantum duality. Because measurement collapses the Hawking-Hartle quantum wave of the cosmos, dark energy cannot be detected or measured in any conventional manner. The quantitative results are confirmed using some exact solutions for the hydrogen atom. In particular the ordinary energy of the quantum particle is given by E(0) = (/2)(mc2) where is Hardy’s probability of quantum entanglement, =( - 1)/2 is the Hausdorff dimension of the zero measure thin Cantor set modeling the quantum particle, while the dark energy of the quantum wave is given by E(D) = (5/2)(mc2) where is the Hausdorff dimension of the positive measure thick empty Cantor set modeling the quantum wave and the factor five (5) is the Kaluza-Klein spacetime dimension to which the measure zero thin Cantor set D(0) = (0,) and the thick empty set D(-1) = (1,) must be lifted to give the five dimensional analogue sets namely and 5 needed for calculating the energy density E(0) and E(D) which together add to Einstein’s maximal total energy density E(total) = E(0) + E(D) = mc2 = E(Einstein). These results seem to be in complete agreement with the WMAP, supernova and recent Planck cosmic measurement as well as the 2005 quantum gravity experiments of V. V. Nesvizhersky and his associates. It also confirms the equivalence of wormhole solutions of Einstein’s equations and quantum entanglement by scaling the Planck scale.
机构地区 Department of Physics
出处 《International Journal of Astronomy and Astrophysics》 2013年第3期205-211,共7页 天文学与天体物理学国际期刊(英文)
关键词 KALUZA-KLEIN DARK ENERGY QUANTUM Particle as Zero SET QUANTUM WAVE as an Empty SET QUANTUM Gravity Experiments Hawking-Hartle WAVE DARK ENERGY of the QUANTUM WAVE Scaling the Planck Scale Equivalence of Einstein-Rosen Bridges Spooky Action at Distance Kaluza-Klein Dark Energy Quantum Particle as Zero Set Quantum Wave as an Empty Set Quantum Gravity Experiments Hawking-Hartle Wave Dark Energy of the Quantum Wave Scaling the Planck Scale Equivalence of Einstein-Rosen Bridges Spooky Action at Distance
  • 相关文献

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部