期刊文献+

Mass Limit of Neutron Star

Mass Limit of Neutron Star
下载PDF
导出
摘要 The mass limit of neutron star has still remained a mystery. The existing Tolman-Oppenheimer-Volkoff (TOV) equation for calculating the limit always gives different values, by introducing different assumptions and having been predicted like 0.7 Mo, 3.2 Mo, 3.6 Mo, where Mo = 1.98 × 1030 Kg. There is a need of some better technique to adopt other than TOV relation to seek out the value. In this paper, a new relation between the mass of the collapsing star and its average density ρ′ has been derived and used to calculate the limit of neutron star. The conditions in radii between Schwarz Child’s radius and the actual radius of the collapsing star have been introduced to calculate the mass of star above which it will transform into a black hole and below it to a neutron star. A new constant, JN = 8.53707554 × 1039 N-3/2s-3Kg3 has been proposed with which if we introduce the average density of the collapsing neutron star, its mass limit can be calculated very easily. By putting the most possible mass density, which is the minimum required density for a collapsing star to transform into the black hole, it has been found that the mass limit of neutron star is quite higher than it has been assumed. The definition for black hole has also been re-defined on the basis of said radii conditions. The mass limit of neutron star has still remained a mystery. The existing Tolman-Oppenheimer-Volkoff (TOV) equation for calculating the limit always gives different values, by introducing different assumptions and having been predicted like 0.7 Mo, 3.2 Mo, 3.6 Mo, where Mo = 1.98 × 1030 Kg. There is a need of some better technique to adopt other than TOV relation to seek out the value. In this paper, a new relation between the mass of the collapsing star and its average density ρ′ has been derived and used to calculate the limit of neutron star. The conditions in radii between Schwarz Child’s radius and the actual radius of the collapsing star have been introduced to calculate the mass of star above which it will transform into a black hole and below it to a neutron star. A new constant, JN = 8.53707554 × 1039 N-3/2s-3Kg3 has been proposed with which if we introduce the average density of the collapsing neutron star, its mass limit can be calculated very easily. By putting the most possible mass density, which is the minimum required density for a collapsing star to transform into the black hole, it has been found that the mass limit of neutron star is quite higher than it has been assumed. The definition for black hole has also been re-defined on the basis of said radii conditions.
出处 《International Journal of Astronomy and Astrophysics》 2014年第2期414-418,共5页 天文学与天体物理学国际期刊(英文)
关键词 Black Hole Neutron Star SCHWARZ Child’s Radius Relation DEGENERACY Pressure Event HORIZON FCC and HCP LATTICES and TOV Equation Black Hole Neutron Star Schwarz Child’s Radius Relation Degeneracy Pressure Event Horizon FCC and HCP Lattices and TOV Equation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部