期刊文献+

Inferring the Structure of the Pre-Protostellar Core L1498

Inferring the Structure of the Pre-Protostellar Core L1498
下载PDF
导出
摘要 We present a study of the pre-protostellar core (PPC) L1498. A series of self-consistent, three-dimensional continuum radiative transfer models are constructed. The outputs of these models are convolved with appropriate telescope beam responses, including the effect of beam chopping to simulate SCUBA observations. The simulated observations are compared with existing observational data. An automated search is conducted in the multi-dimensional parameter space to identify the best-fit model. Grids of models are constructed in the vicinity of the best fit in order to understand the sensitivity/uncertainty of the results. We find that the source is well fit by a prolate spheroid of cutoff (and thus approximately outer) radius rcut = 0.073 ± 0.005 pc, axis ratio q = 2.0 ± 0.2, a central luminosity L* -3 Lsun, and an optical depth in the visible of τv = 20 ± 5. We find that the PPC is illuminated by two external radiation fields: a uniform ISRF of strength sISRF= 0.5 ± 0.25 and a local plane-parallel radiation field sPPRF = 1.0 ± 0.5. Both of these radiation fields are locally attenuated, with τISRF = 1.0 ± 0.25, and τPPRF = 1.25 ± 0.75, consistent with the fact that L1498 is embedded in a larger cloud. Most interestingly, the density fall-off at the outer edge is extremely steep, having a power law of m > 10. This is effectively a “sharp edge” to the PPC, and together with the constant density interior, is interpreted as potential signs of a pressure-confined core. We present a study of the pre-protostellar core (PPC) L1498. A series of self-consistent, three-dimensional continuum radiative transfer models are constructed. The outputs of these models are convolved with appropriate telescope beam responses, including the effect of beam chopping to simulate SCUBA observations. The simulated observations are compared with existing observational data. An automated search is conducted in the multi-dimensional parameter space to identify the best-fit model. Grids of models are constructed in the vicinity of the best fit in order to understand the sensitivity/uncertainty of the results. We find that the source is well fit by a prolate spheroid of cutoff (and thus approximately outer) radius rcut = 0.073 ± 0.005 pc, axis ratio q = 2.0 ± 0.2, a central luminosity L* -3 Lsun, and an optical depth in the visible of τv = 20 ± 5. We find that the PPC is illuminated by two external radiation fields: a uniform ISRF of strength sISRF= 0.5 ± 0.25 and a local plane-parallel radiation field sPPRF = 1.0 ± 0.5. Both of these radiation fields are locally attenuated, with τISRF = 1.0 ± 0.25, and τPPRF = 1.25 ± 0.75, consistent with the fact that L1498 is embedded in a larger cloud. Most interestingly, the density fall-off at the outer edge is extremely steep, having a power law of m > 10. This is effectively a “sharp edge” to the PPC, and together with the constant density interior, is interpreted as potential signs of a pressure-confined core.
出处 《International Journal of Astronomy and Astrophysics》 2014年第3期519-529,共11页 天文学与天体物理学国际期刊(英文)
关键词 Stars: Formation ISM: CLOUDS ISM: L1498 Submillmeter: STARS ISM: STRUCTURE Infrared: STARS Stars: Formation ISM: Clouds ISM: L1498 Submillmeter: Stars ISM: Structure Infrared: Stars
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部