摘要
In this manuscript, the existence of periodic orbits of collision of the first kind has been discussed on the model of Autonomous Four-body Problem by the method of analytic continuation given by Giacaglia [1] and Bhatnagar [2] [3]. For the existence of periodic orbits, Duboshin’s criterion [4] has been satisfied and it has been confirmed by analyzing the Poincare surfaces of section (PSS) [5]. Also it has been shown that the case of collision given by Levi-Civita [6] [7] is conserved by the method analytic continuation. In all sections of this manuscript, equilateral triangular configuration given by Ceccaroni and Biggs [8] has been considered. In this model, third primary of L4 inferior mass (in comparison of the other primaries) is placed at the equilibrium point of the R3BP.
In this manuscript, the existence of periodic orbits of collision of the first kind has been discussed on the model of Autonomous Four-body Problem by the method of analytic continuation given by Giacaglia [1] and Bhatnagar [2] [3]. For the existence of periodic orbits, Duboshin’s criterion [4] has been satisfied and it has been confirmed by analyzing the Poincare surfaces of section (PSS) [5]. Also it has been shown that the case of collision given by Levi-Civita [6] [7] is conserved by the method analytic continuation. In all sections of this manuscript, equilateral triangular configuration given by Ceccaroni and Biggs [8] has been considered. In this model, third primary of L4 inferior mass (in comparison of the other primaries) is placed at the equilibrium point of the R3BP.