摘要
Ionosphere parameters determination is used to characterize its composition in particles. These results have been compared to data curried from Ouagadougou station. The present study deals with Total Electron Contents (TEC) results determined by Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) version 1.94 and International Reference Ionosphere (IRI) version 2012 during solar cycle 22. The minimum and maximum phases of solar cycle 22 are considered in this study for TEC determination. The station is located at Ouagadougou, in western Africa, characterized by its latitude (12.4°N) and longitude (358.5°E). The present study completes the two previous articles on hmF2 and foF2 parameters determination on the same station by comparison between TEC results carried out from TIEGCM and IRI models. So that, quiet time condition is determined by Aa (≤20 nT) for the five quietest days in each characteristic month of seasons. Rz values characterize minimum and maximum solar cycle phases.
Ionosphere parameters determination is used to characterize its composition in particles. These results have been compared to data curried from Ouagadougou station. The present study deals with Total Electron Contents (TEC) results determined by Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) version 1.94 and International Reference Ionosphere (IRI) version 2012 during solar cycle 22. The minimum and maximum phases of solar cycle 22 are considered in this study for TEC determination. The station is located at Ouagadougou, in western Africa, characterized by its latitude (12.4°N) and longitude (358.5°E). The present study completes the two previous articles on hmF2 and foF2 parameters determination on the same station by comparison between TEC results carried out from TIEGCM and IRI models. So that, quiet time condition is determined by Aa (≤20 nT) for the five quietest days in each characteristic month of seasons. Rz values characterize minimum and maximum solar cycle phases.