摘要
We measure properties of dark matter in four well motivated scenarios: fermions with ultra-relativistic thermal equilibrium (URTE), bosons with URTE, fermions with non-relativistic thermal equilibrium (NRTE), and bosons with NRTE. We attempt to discriminate between these four scenarios with studies of spiral galaxy rotation curves, and galaxy stellar mass distributions. The measurements show evidence for boson dark matter with a significance of 3.5σ, and obtain no significant discrimination between URTE and NRTE.
We measure properties of dark matter in four well motivated scenarios: fermions with ultra-relativistic thermal equilibrium (URTE), bosons with URTE, fermions with non-relativistic thermal equilibrium (NRTE), and bosons with NRTE. We attempt to discriminate between these four scenarios with studies of spiral galaxy rotation curves, and galaxy stellar mass distributions. The measurements show evidence for boson dark matter with a significance of 3.5σ, and obtain no significant discrimination between URTE and NRTE.
作者
Bruce Hoeneisen
Bruce Hoeneisen(Universidad San Francisco de Quito, Quito, Ecuador)