期刊文献+

The Computational Theory of Intelligence: Feedback

The Computational Theory of Intelligence: Feedback
下载PDF
导出
摘要 In this paper we discuss the applications of feedback to intelligent agents. We show that it adds a momentum component to the learning algorithm. We derive via Lyapunov stability theory the condition necessary in order that the entropy minimization principal of computational intelligence is preserved in the presence of feedback. In this paper we discuss the applications of feedback to intelligent agents. We show that it adds a momentum component to the learning algorithm. We derive via Lyapunov stability theory the condition necessary in order that the entropy minimization principal of computational intelligence is preserved in the presence of feedback.
作者 Daniel Kovach
机构地区 Quantitative Research
出处 《International Journal of Modern Nonlinear Theory and Application》 2017年第2期70-73,共4页 现代非线性理论与应用(英文)
关键词 NEURAL NETWORKS FEEDBACK INTELLIGENCE COMPUTATION Artificial INTELLIGENCE LYAPUNOV Stability Neural Networks Feedback Intelligence Computation Artificial Intelligence Lyapunov Stability
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部