摘要
Most civil engineering structures are formed using a number of materials that are bonded to each other with their surface-to-surface interaction playing key role on the overall response of the structure. Unfortunately these interactions are extremely variable;simplified and extremely detailed models trialed to date prove quite complex. Models that assume perfect interaction, on the other hand, predict unsafe behavior. In this paper a damage mechanics based interaction between two materials of different softening properties is developed using homogenisation approach. This paper describes the process of developing a bi-material representative volume element (RVE) using damaged homogenisation approach. The novelty in this paper is the development of non-local transient damage identification algorithm. Numerical examples prove the stability of the approach for a simplified RVE and encourage application to other shapes of RVEs.
Most civil engineering structures are formed using a number of materials that are bonded to each other with their surface-to-surface interaction playing key role on the overall response of the structure. Unfortunately these interactions are extremely variable;simplified and extremely detailed models trialed to date prove quite complex. Models that assume perfect interaction, on the other hand, predict unsafe behavior. In this paper a damage mechanics based interaction between two materials of different softening properties is developed using homogenisation approach. This paper describes the process of developing a bi-material representative volume element (RVE) using damaged homogenisation approach. The novelty in this paper is the development of non-local transient damage identification algorithm. Numerical examples prove the stability of the approach for a simplified RVE and encourage application to other shapes of RVEs.