期刊文献+

Analysis of the Navier-Stokes Equations

Analysis of the Navier-Stokes Equations
下载PDF
导出
摘要 The Navier-Stokes equations for incompressible fluid flows with impervious boundary and free surface are analyzed by means of a perturbation procedure involving dimensionless variables and a dimensionless perturbation parameter which is composed of kinematic viscosity of fluid, the acceleration of gravity and a characteristic length. The new dimensionless variables are introduced into the equation system. In addition, the perturbation parameter is introduced into terms for deriving approximations systems of different orders. Such systems are obtained by equating coefficients of like powers of perturbation parameter for the successive coefficients in the series. In these systems several terms are analyzed with regards to size and significance. Based on those systems, suitable solutions of NS equations can be found for different boundary conditions. For example, a relation for stationary channel flow is obtained as approximation to the NS equations of the lowest order after transformation back to dimensional variables. The Navier-Stokes equations for incompressible fluid flows with impervious boundary and free surface are analyzed by means of a perturbation procedure involving dimensionless variables and a dimensionless perturbation parameter which is composed of kinematic viscosity of fluid, the acceleration of gravity and a characteristic length. The new dimensionless variables are introduced into the equation system. In addition, the perturbation parameter is introduced into terms for deriving approximations systems of different orders. Such systems are obtained by equating coefficients of like powers of perturbation parameter for the successive coefficients in the series. In these systems several terms are analyzed with regards to size and significance. Based on those systems, suitable solutions of NS equations can be found for different boundary conditions. For example, a relation for stationary channel flow is obtained as approximation to the NS equations of the lowest order after transformation back to dimensional variables.
作者 Helmut Martin
出处 《Journal of Applied Mathematics and Physics》 2014年第10期938-947,共10页 应用数学与应用物理(英文)
关键词 NAVIER-STOKES Equations INCOMPRESSIBLE FLOW PERTURBATION Theory STATIONARY Open Channel FLOW Navier-Stokes Equations Incompressible Flow Perturbation Theory Stationary Open Channel Flow
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部