摘要
The unsteady two-dimensional, laminar flow of a viscous, incompressible, electrically conducting fluid towards a shrinking surface in the presence of a uniform transverse magnetic field is studied. Taking suitable similarity variables, the governing boundary layer equations are transformed to ordinary differential equations and solved numerically by a perturbation technique for a small magnetic parameter. The effects of various parameters such as unsteadiness parameter, velocity parameter, magnetic parameter, Prandtl number and Eckert number for velocity and temperature distributions along with local Skin friction coefficient and local Nusselt number have been discussed in detail through numerical and graphical representations.
The unsteady two-dimensional, laminar flow of a viscous, incompressible, electrically conducting fluid towards a shrinking surface in the presence of a uniform transverse magnetic field is studied. Taking suitable similarity variables, the governing boundary layer equations are transformed to ordinary differential equations and solved numerically by a perturbation technique for a small magnetic parameter. The effects of various parameters such as unsteadiness parameter, velocity parameter, magnetic parameter, Prandtl number and Eckert number for velocity and temperature distributions along with local Skin friction coefficient and local Nusselt number have been discussed in detail through numerical and graphical representations.