期刊文献+

Unsteady Magnetohydrodynamic Boundary Layer Flow near the Stagnation Point towards a Shrinking Surface

Unsteady Magnetohydrodynamic Boundary Layer Flow near the Stagnation Point towards a Shrinking Surface
下载PDF
导出
摘要 The unsteady two-dimensional, laminar flow of a viscous, incompressible, electrically conducting fluid towards a shrinking surface in the presence of a uniform transverse magnetic field is studied. Taking suitable similarity variables, the governing boundary layer equations are transformed to ordinary differential equations and solved numerically by a perturbation technique for a small magnetic parameter. The effects of various parameters such as unsteadiness parameter, velocity parameter, magnetic parameter, Prandtl number and Eckert number for velocity and temperature distributions along with local Skin friction coefficient and local Nusselt number have been discussed in detail through numerical and graphical representations. The unsteady two-dimensional, laminar flow of a viscous, incompressible, electrically conducting fluid towards a shrinking surface in the presence of a uniform transverse magnetic field is studied. Taking suitable similarity variables, the governing boundary layer equations are transformed to ordinary differential equations and solved numerically by a perturbation technique for a small magnetic parameter. The effects of various parameters such as unsteadiness parameter, velocity parameter, magnetic parameter, Prandtl number and Eckert number for velocity and temperature distributions along with local Skin friction coefficient and local Nusselt number have been discussed in detail through numerical and graphical representations.
出处 《Journal of Applied Mathematics and Physics》 2015年第7期921-930,共10页 应用数学与应用物理(英文)
关键词 UNSTEADY Flow MAGNETOHYDRODYNAMIC BOUNDARY Layer STAGNATION Point SHRINKING SURFACE Unsteady Flow Magnetohydrodynamic Boundary Layer Stagnation Point Shrinking Surface
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部