摘要
The paper presents 3D DEM simulation results of undrained tests for loose assemblies with varied porosities under both triaxial compression and plane strain conditions, using a periodic cell. The undrained tests were modelled by deforming the samples under constant volume conditions, which corresponds to saturated soil samples. The undrained stress paths are shown to be qualitatively similar to physical experimental results. The triggering of liquefaction and temporary liquefaction is identified by a microscopic parameter with redundancy factor (RF) equal to unity, which defines the transition from “solid-like” to “liquid-like” behaviour. The undrained behaviour of granular soils is found to be mainly governed by the evolution of redundancy factor, and a reversal of deviatoric stress in stress path (temporary liquefaction) is found to be due to temporary loss of contacts forming a structural mechanism in the system where RF is smaller than unity during the evolution.
The paper presents 3D DEM simulation results of undrained tests for loose assemblies with varied porosities under both triaxial compression and plane strain conditions, using a periodic cell. The undrained tests were modelled by deforming the samples under constant volume conditions, which corresponds to saturated soil samples. The undrained stress paths are shown to be qualitatively similar to physical experimental results. The triggering of liquefaction and temporary liquefaction is identified by a microscopic parameter with redundancy factor (RF) equal to unity, which defines the transition from “solid-like” to “liquid-like” behaviour. The undrained behaviour of granular soils is found to be mainly governed by the evolution of redundancy factor, and a reversal of deviatoric stress in stress path (temporary liquefaction) is found to be due to temporary loss of contacts forming a structural mechanism in the system where RF is smaller than unity during the evolution.