摘要
The Galilei invariant model of the nucleon as a system of three point particles, whose dynamics is governed by Schr?dinger equation, after six Hamiltonian parameters fitting, predicts magnetic momenta, masses and charge radii of the proton and neutron with experimental precision. Now this model is applied in order to investigate nucleon charge, mass and magnetism distributions. The obtained electric and magnetic form factors at low values of momentum transfer are in satisfactory agreement with experimental information. The model predicts that neutron is a more compact system than proton.
The Galilei invariant model of the nucleon as a system of three point particles, whose dynamics is governed by Schr?dinger equation, after six Hamiltonian parameters fitting, predicts magnetic momenta, masses and charge radii of the proton and neutron with experimental precision. Now this model is applied in order to investigate nucleon charge, mass and magnetism distributions. The obtained electric and magnetic form factors at low values of momentum transfer are in satisfactory agreement with experimental information. The model predicts that neutron is a more compact system than proton.