摘要
Dark energy is explained using familiar notions and concepts used in quantum field theory, string theory and the exact mathematical theory of spacetime. The main result of the present work is first a new mathematical definition of pre-quantum spacetime (QST) as a multiset made of infinitely many empty Cantor sets connected to pre-quantum wave empty set (QW) and the pre-quantum particle (QP) zero set via the cobordism equation ∂(QW) = (QP)U(QST). Second, and in turn, this new path of reasoning is used to validate the quantum splitting of Einstein’s E = mc<sup>2</sup> into the sum of the ordinary energy E = mc<sup>2</sup>/22 of the quantum particle and the dark energy E = mc<sup>2</sup>(21/22) of the quantum wave, used predominantly to explain the observed accelerated expansion of the universe.
Dark energy is explained using familiar notions and concepts used in quantum field theory, string theory and the exact mathematical theory of spacetime. The main result of the present work is first a new mathematical definition of pre-quantum spacetime (QST) as a multiset made of infinitely many empty Cantor sets connected to pre-quantum wave empty set (QW) and the pre-quantum particle (QP) zero set via the cobordism equation ∂(QW) = (QP)U(QST). Second, and in turn, this new path of reasoning is used to validate the quantum splitting of Einstein’s E = mc<sup>2</sup> into the sum of the ordinary energy E = mc<sup>2</sup>/22 of the quantum particle and the dark energy E = mc<sup>2</sup>(21/22) of the quantum wave, used predominantly to explain the observed accelerated expansion of the universe.
作者
Mohamed S. El Naschie
Mohamed S. El Naschie(Department of Physics, Faculty of Science, University of Alexandria, Alexandria, Egypt)