期刊文献+

Generalized Uncertainty Relations, Curved Phase-Spaces and Quantum Gravity

Generalized Uncertainty Relations, Curved Phase-Spaces and Quantum Gravity
下载PDF
导出
摘要 Modifications of the Weyl-Heisenberg algebra are proposed where the classical limit corresponds to a metric in (curved) momentum spaces. In the simplest scenario, the 2D de Sitter metric of constant curvature in momentum space furnishes a hierarchy of modified uncertainty relations leading to a minimum value for the position uncertainty . The first uncertainty relation of this hierarchy has the same functional form as the stringy modified uncertainty relation with a Planck scale minimum value for at . We proceed with a discussion of the most general curved phase space scenario (cotangent bundle of spacetime) and provide the noncommuting phase space coordinates algebra in terms of the symmetric and nonsymmetric metric components of a Hermitian complex metric , such . Yang’s noncommuting phase-space coordinates algebra, combined with the Schrodinger-Robertson inequalities involving angular momentum eigenstates, reveals how a quantized area operator in units of emerges like it occurs in Loop Quantum Gravity (LQG). Some final comments are made about Fedosov deformation quantization, Noncommutative and Nonassociative gravity. Modifications of the Weyl-Heisenberg algebra are proposed where the classical limit corresponds to a metric in (curved) momentum spaces. In the simplest scenario, the 2D de Sitter metric of constant curvature in momentum space furnishes a hierarchy of modified uncertainty relations leading to a minimum value for the position uncertainty . The first uncertainty relation of this hierarchy has the same functional form as the stringy modified uncertainty relation with a Planck scale minimum value for at . We proceed with a discussion of the most general curved phase space scenario (cotangent bundle of spacetime) and provide the noncommuting phase space coordinates algebra in terms of the symmetric and nonsymmetric metric components of a Hermitian complex metric , such . Yang’s noncommuting phase-space coordinates algebra, combined with the Schrodinger-Robertson inequalities involving angular momentum eigenstates, reveals how a quantized area operator in units of emerges like it occurs in Loop Quantum Gravity (LQG). Some final comments are made about Fedosov deformation quantization, Noncommutative and Nonassociative gravity.
作者 Carlos Castro Carlos Castro(Quantum Gravity Research, Topanga, CA, USA;Center for Theoretical Studies of Physical Systems, Atlanta, USA;Clark Atlanta University, Atlanta, GA, USA)
出处 《Journal of Applied Mathematics and Physics》 2016年第10期1870-1878,共10页 应用数学与应用物理(英文)
关键词 Uncertainty Relations GRAVITY Finsler Geometry Born Reciprocity Phase Space Uncertainty Relations Gravity Finsler Geometry Born Reciprocity Phase Space
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部