摘要
In this paper, a hibernation plankton-nutrient chemostat model with delayed response in growth is considered. By using the stroboscopic map and the theorem of impulsive delay differential equation, a plankton-extinction boundary periodic solution is obtained. The sufficient conditions on the permanence and globally attractive of the chemostat system are also obtained. Our main results reveal that the delayed response in growth plays an important role on the dynamical behaviors of system.
In this paper, a hibernation plankton-nutrient chemostat model with delayed response in growth is considered. By using the stroboscopic map and the theorem of impulsive delay differential equation, a plankton-extinction boundary periodic solution is obtained. The sufficient conditions on the permanence and globally attractive of the chemostat system are also obtained. Our main results reveal that the delayed response in growth plays an important role on the dynamical behaviors of system.