期刊文献+

Holder Regularity for Abstract Fractional Cauchy Problems with Order in(0,1)

下载PDF
导出
摘要 In this paper, we study the regularity of mild solution for the following fractional abstract Cauchy problem Dt αu(t)=Au(t)+f(t), t ∈ (0,T] u(0)= x0 on a Banach space X with order α ∈ (0,1), where the fractional derivative is understood in the sense of Caputo fractional derivatives. We show that if A generates an analytic α-times resolvent family on X and f ∈ Lp ([0,T];X) for some p > 1/α, then the mild solution to the above equation is in Cα-1/p[ò,T] for every ò > 0. Moreover, if f is H?lder continuous, then so are the Dt αu(t) and Au(t). In this paper, we study the regularity of mild solution for the following fractional abstract Cauchy problem Dt αu(t)=Au(t)+f(t), t ∈ (0,T] u(0)= x0 on a Banach space X with order α ∈ (0,1), where the fractional derivative is understood in the sense of Caputo fractional derivatives. We show that if A generates an analytic α-times resolvent family on X and f ∈ Lp ([0,T];X) for some p > 1/α, then the mild solution to the above equation is in Cα-1/p[ò,T] for every ò > 0. Moreover, if f is H?lder continuous, then so are the Dt αu(t) and Au(t).
出处 《Journal of Applied Mathematics and Physics》 2018年第1期310-319,共10页 应用数学与应用物理(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部