摘要
Large-span air-conditioning plant rooms have a large roof area and suffer from serious solar radiation in summer. The outside roof surface temperature is very high, so cooling load of roof occupies a large proportion in the envelope structure cooling load of large-span air-conditioning plant rooms. Based on the Coanda airfoil air induction unit, the author combined with exhaust air in large-span air-conditioning plant rooms to design the roof air film cooling system of large-span air-conditioning plant rooms. The adherence air film formed on the outside surface takes away heat on the outside surface of the roof, so as to reduce outside roof surface temperature of the roof, decrease heat transfer temperature difference between inside and outside roof surfaces of, and reduce roof cooling cold. Furthermore, the mathematical model and numerical simulation method of considering fluid-structure interaction for heat transfer and influences of solar radiation on air film formation of outside surface and cooling were constructed. Moreover, the numerical simulation method was conducted the validation of effectiveness. Also, the author discussed the air film formation mechanism and air film cooling ability of outside surface in large-span air-conditioning plant rooms without natural wind, developed a new air film cooling technology for the roof of large-span air-conditioning plant rooms, and supplemented the existing roof cooling technology.
Large-span air-conditioning plant rooms have a large roof area and suffer from serious solar radiation in summer. The outside roof surface temperature is very high, so cooling load of roof occupies a large proportion in the envelope structure cooling load of large-span air-conditioning plant rooms. Based on the Coanda airfoil air induction unit, the author combined with exhaust air in large-span air-conditioning plant rooms to design the roof air film cooling system of large-span air-conditioning plant rooms. The adherence air film formed on the outside surface takes away heat on the outside surface of the roof, so as to reduce outside roof surface temperature of the roof, decrease heat transfer temperature difference between inside and outside roof surfaces of, and reduce roof cooling cold. Furthermore, the mathematical model and numerical simulation method of considering fluid-structure interaction for heat transfer and influences of solar radiation on air film formation of outside surface and cooling were constructed. Moreover, the numerical simulation method was conducted the validation of effectiveness. Also, the author discussed the air film formation mechanism and air film cooling ability of outside surface in large-span air-conditioning plant rooms without natural wind, developed a new air film cooling technology for the roof of large-span air-conditioning plant rooms, and supplemented the existing roof cooling technology.