期刊文献+

Finite Difference Simulation of Implosive Collapsing for Aluminum Spherical Shell

Finite Difference Simulation of Implosive Collapsing for Aluminum Spherical Shell
下载PDF
导出
摘要 Implosive collapsing for spherical metal shells is a kind of dynamic compressing method, in which high pressure and high compression degree of materials can be attained. In present work, the dynamic process of implosive collapsing for spherical metal shells was regard as spherical symmetry ideally, so one-dimensional spherical symmetric fluid dynamics conservation equations were established, and the finite difference schemes for solving these equations were given. An aluminum spherical shell was assumed, whose inner radius is 4cm and thickness is 2 cm. In numerical simulation, initial centripetal velocities (800, 1000 and 1200 m/s) were used to make aluminum spherical shell collapse. The simulation results show that during the process of implosive collapsing, the material exhibits a compression-expansion-compression pulsation process, and the internal pressure changes and distribution are consistent with the theoretical expectations. The simulation results can be used as a reference for relevant analysis. Implosive collapsing for spherical metal shells is a kind of dynamic compressing method, in which high pressure and high compression degree of materials can be attained. In present work, the dynamic process of implosive collapsing for spherical metal shells was regard as spherical symmetry ideally, so one-dimensional spherical symmetric fluid dynamics conservation equations were established, and the finite difference schemes for solving these equations were given. An aluminum spherical shell was assumed, whose inner radius is 4cm and thickness is 2 cm. In numerical simulation, initial centripetal velocities (800, 1000 and 1200 m/s) were used to make aluminum spherical shell collapse. The simulation results show that during the process of implosive collapsing, the material exhibits a compression-expansion-compression pulsation process, and the internal pressure changes and distribution are consistent with the theoretical expectations. The simulation results can be used as a reference for relevant analysis.
出处 《Journal of Applied Mathematics and Physics》 2018年第8期1606-1613,共8页 应用数学与应用物理(英文)
关键词 Implosive COLLAPSE SPHERICAL SHELL Finite DIFFERENCE Numerical SIMULATION Implosive Collapse Spherical Shell Finite Difference Numerical Simulation
  • 相关文献

参考文献1

二级参考文献1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部