期刊文献+

Dimension-Reduced Model for Deep-Water Waves

Dimension-Reduced Model for Deep-Water Waves
下载PDF
导出
摘要 Starting from the 2D Euler equations for an incompressible potential flow, a dimension-reduced model describing deep-water surface waves is derived. Similar to the Shallow-Water case, the z-dependence of the dependent variables is found explicitly from the Laplace equation and a set of two one- dimensional equations in x for the surface velocity and the surface elevation remains. The model is nonlocal and can be formulated in conservative form, describing waves over an infinitely deep layer. Finally, numerical solutions are presented for several initial conditions. The side-band instability of Stokes waves and stable envelope solitons are obtained in agreement with other work. The conservation of the total energy is checked. Starting from the 2D Euler equations for an incompressible potential flow, a dimension-reduced model describing deep-water surface waves is derived. Similar to the Shallow-Water case, the z-dependence of the dependent variables is found explicitly from the Laplace equation and a set of two one- dimensional equations in x for the surface velocity and the surface elevation remains. The model is nonlocal and can be formulated in conservative form, describing waves over an infinitely deep layer. Finally, numerical solutions are presented for several initial conditions. The side-band instability of Stokes waves and stable envelope solitons are obtained in agreement with other work. The conservation of the total energy is checked.
出处 《Journal of Applied Mathematics and Physics》 2019年第1期72-92,共21页 应用数学与应用物理(英文)
关键词 HYDRODYNAMICS OCEAN WAVES DEEP-WATER WAVES Numerical Solutions FRACTAL Derivatives Hydrodynamics Ocean Waves Deep-Water Waves Numerical Solutions Fractal Derivatives
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部