期刊文献+

The Spherical Atom Model of Helium Based on the Theorem of Niels Bohr 被引量:1

The Spherical Atom Model of Helium Based on the Theorem of Niels Bohr
下载PDF
导出
摘要 Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model. Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model.
机构地区 Independent Scholar
出处 《Journal of Applied Mathematics and Physics》 2019年第1期172-180,共9页 应用数学与应用物理(英文)
关键词 Modified BOHR MODEL Electron-Trajectories ELECTRON-SPIN 3D-Atom-Model Confutation of Heisenberg’s Uncertainty-Principle Modified Bohr Model Electron-Trajectories Electron-Spin 3D-Atom-Model Confutation of Heisenberg’s Uncertainty-Principle
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部