期刊文献+

MHD Effects on Mixed Convective Nanofluid Flow with Viscous Dissipation in Surrounding Porous Medium 被引量:1

MHD Effects on Mixed Convective Nanofluid Flow with Viscous Dissipation in Surrounding Porous Medium
下载PDF
导出
摘要 In existence of concerning magnetic field, heat together with mass transfer features on mixed convective copper-water nanofluid flow through inclined plate is investigated in surrounding porous medium together with viscous dissipation. A proper set of useful similarity transforms is considered as to transform the desired governing equations into a system as ordinary differential equations which are nonlinear. The transformed equations for nanofluid flow include interrelated boundary conditions which are resolved numerically applying Runge-Kutta integration process of sixth-order together with Nachtsheim and Swigert technique. The numerical consequences are compared together with literature which was published previously and acceptable comparisons are found. The influence of significant parameters like as magnetic parameter, angle for inclination, Eckert number, fluid suction parameter, nanoparticles volume fraction, Schmidt number and permeability parameter on concerning velocity, temperature along with concentration boundary layers remains examined and calculated. Numerical consequences are presented graphically. Moreover, the impact regarding these physical parameters for engineering significance in expressions of local skin friction coefficient in addition to local Nusselt together with Sherwood numbers is correspondingly examined. In existence of concerning magnetic field, heat together with mass transfer features on mixed convective copper-water nanofluid flow through inclined plate is investigated in surrounding porous medium together with viscous dissipation. A proper set of useful similarity transforms is considered as to transform the desired governing equations into a system as ordinary differential equations which are nonlinear. The transformed equations for nanofluid flow include interrelated boundary conditions which are resolved numerically applying Runge-Kutta integration process of sixth-order together with Nachtsheim and Swigert technique. The numerical consequences are compared together with literature which was published previously and acceptable comparisons are found. The influence of significant parameters like as magnetic parameter, angle for inclination, Eckert number, fluid suction parameter, nanoparticles volume fraction, Schmidt number and permeability parameter on concerning velocity, temperature along with concentration boundary layers remains examined and calculated. Numerical consequences are presented graphically. Moreover, the impact regarding these physical parameters for engineering significance in expressions of local skin friction coefficient in addition to local Nusselt together with Sherwood numbers is correspondingly examined.
出处 《Journal of Applied Mathematics and Physics》 2019年第4期968-982,共15页 应用数学与应用物理(英文)
关键词 MHD MIXED Convection NANOFLUID Porous Medium VISCOUS Dissipation MHD Mixed Convection Nanofluid Porous Medium Viscous Dissipation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部