摘要
In this paper, the exponential decreasing kernel is used in Laplace integral transform to transform a function from a certain domain to another domain. It is shown, in a rigorous way, that the Laplace transform of the delta function is exactly one half rather than one, as it is believed. In addition, when this kernel is used in integral transform of attractive and repulsive Coulomb potential, it yields a finite definite value at the point of singularity.
In this paper, the exponential decreasing kernel is used in Laplace integral transform to transform a function from a certain domain to another domain. It is shown, in a rigorous way, that the Laplace transform of the delta function is exactly one half rather than one, as it is believed. In addition, when this kernel is used in integral transform of attractive and repulsive Coulomb potential, it yields a finite definite value at the point of singularity.