期刊文献+

Inverse Square Law in Spectrally Bounded Quantum Dynamics

下载PDF
导出
摘要 The object of the paper is to formulate Quantum (Schrödinger) dynamics of spectrally bounded wavefunction. The Nyquist theorem is used to replace the wavefunction with a discrete series of numbers. Consequently, in this case, Schrödinger dynamics can be formalized as a universal set of ordinary differential Equations, with universal coupling between them, which are related to Euler’s formula. It is shown that the coefficient (m, n) is inversely proportional to the distance between the points n and m. As far as we know, this is the first time that this inverse square law was formulated. The object of the paper is to formulate Quantum (Schrödinger) dynamics of spectrally bounded wavefunction. The Nyquist theorem is used to replace the wavefunction with a discrete series of numbers. Consequently, in this case, Schrödinger dynamics can be formalized as a universal set of ordinary differential Equations, with universal coupling between them, which are related to Euler’s formula. It is shown that the coefficient (m, n) is inversely proportional to the distance between the points n and m. As far as we know, this is the first time that this inverse square law was formulated.
出处 《Journal of Applied Mathematics and Physics》 2019年第11期2701-2711,共11页 应用数学与应用物理(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部