期刊文献+

A New Binomial Tree Method for European Options under the Jump Diffusion Model 被引量:1

A New Binomial Tree Method for European Options under the Jump Diffusion Model
下载PDF
导出
摘要 In this paper, the binomial tree method is introduced to price the European option under a class of jump-diffusion model. The purpose of the addressed problem is to find the parameters of the binomial tree and design the pricing formula for European option. Compared with the continuous situation, the proposed value equation of option under the new binomial tree model converges to Merton’s accurate analytical solution, and the established binomial tree method can be proved to work better than the traditional binomial tree. Finally, a numerical example is presented to illustrate the effectiveness of the proposed pricing methods. In this paper, the binomial tree method is introduced to price the European option under a class of jump-diffusion model. The purpose of the addressed problem is to find the parameters of the binomial tree and design the pricing formula for European option. Compared with the continuous situation, the proposed value equation of option under the new binomial tree model converges to Merton’s accurate analytical solution, and the established binomial tree method can be proved to work better than the traditional binomial tree. Finally, a numerical example is presented to illustrate the effectiveness of the proposed pricing methods.
出处 《Journal of Applied Mathematics and Physics》 2019年第12期3012-3021,共10页 应用数学与应用物理(英文)
关键词 OPTION PRICING BINOMIAL TREE JUMP-DIFFUSION Process MOMENT Estimation Option Pricing Binomial Tree Jump-Diffusion Process Moment Estimation
  • 相关文献

参考文献2

二级参考文献12

  • 1侯木舟,周耀琼.二叉树期权定价方法的一种新推广[J].数学理论与应用,2006,26(3):111-115. 被引量:5
  • 2[1] Black F, Scholes M. The pricing of options and corporate liabilities. J Pol Econ, 1973(81):637~659.
  • 3[2] Cox J C, Rubinstein M. Option Markets. Prentics Hall,1985.
  • 4[3] Hull J. Option, Futures and Other derivative Securities. Second Edition, Prentice Hall, 1993.
  • 5[4] Wilmott P, Dewynne J, Howison S. Option Pricing: Mathematical Model and Computation. Oxford Financial Press,1995.
  • 6R.C.Merton.Option Pricing when Underlying Stock Returns are Discontinuous[J].Financial Economics,1976,3:125-144.
  • 7Cox,J.C.,and S.A.Ross,1976,The valuation of options for alternative stochastic processes,Journal of Fi-nancial Economics 3,145-166.
  • 8Cox,J.C.,and M.Rubinstein,1979,Option pricing:A simplified approach,Journal of Financial Economics7,229-263.
  • 9Cheng-long Xu,Xiao-song Qian,Li-shang Jiang,Numerical analysis on binomial tree methods for a jump-diffusion model,Journal of Computational and Applied Mathematics 156(2003)23-45.
  • 10陈松南.金融工程学[M],复旦大学出版社,2002.11:355-364.

共引文献36

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部