期刊文献+

Bayesian Regularized Quantile Regression Analysis Based on Asymmetric Laplace Distribution

Bayesian Regularized Quantile Regression Analysis Based on Asymmetric Laplace Distribution
下载PDF
导出
摘要 In recent years, variable selection based on penalty likelihood methods has aroused great concern. Based on the Gibbs sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression with adaptive Lasso and Lasso penalty from a Bayesian point of view. Under the non-Bayesian and Bayesian framework, several regularization quantile regression methods are systematically compared for error terms with different distributions and heteroscedasticity. Under the error term of asymmetric Laplace distribution, statistical simulation results show that the Bayesian regularized quantile regression is superior to other distributions in all quantiles. And based on the asymmetric Laplace distribution, the Bayesian regularized quantile regression approach performs better than the non-Bayesian approach in parameter estimation and prediction. Through real data analyses, we also confirm the above conclusions. In recent years, variable selection based on penalty likelihood methods has aroused great concern. Based on the Gibbs sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression with adaptive Lasso and Lasso penalty from a Bayesian point of view. Under the non-Bayesian and Bayesian framework, several regularization quantile regression methods are systematically compared for error terms with different distributions and heteroscedasticity. Under the error term of asymmetric Laplace distribution, statistical simulation results show that the Bayesian regularized quantile regression is superior to other distributions in all quantiles. And based on the asymmetric Laplace distribution, the Bayesian regularized quantile regression approach performs better than the non-Bayesian approach in parameter estimation and prediction. Through real data analyses, we also confirm the above conclusions.
机构地区 School of Science
出处 《Journal of Applied Mathematics and Physics》 2020年第1期70-84,共15页 应用数学与应用物理(英文)
关键词 ASYMMETRIC LAPLACE Distribution Gibbs Sampling Adaptive Lasso Lasso BAYESIAN REGULARIZATION QUANTILE Regression Asymmetric Laplace Distribution Gibbs Sampling Adaptive Lasso Lasso Bayesian Regularization Quantile Regression
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部