期刊文献+

Dimension of the Non-Differentiability Subset of the Cantor Function

Dimension of the Non-Differentiability Subset of the Cantor Function
下载PDF
导出
摘要 The main purpose of this note is to estimate the size of the set Tμλ of points, at which the Cantor function is not differentiable and we find that the Hausdorff dimension of Tμλ is [log2/log3]2. Moreover, the Packing dimension of Tμλ is log2/log3. The log2 = loge2 is that if ax = N (a >0, and a≠1), then the number x is called the logarithm of N with a base, recorded as x = logaN, read as the logarithm of N with a base, where a is called logarithm Base number, N is called true number. The main purpose of this note is to estimate the size of the set Tμλ of points, at which the Cantor function is not differentiable and we find that the Hausdorff dimension of Tμλ is [log2/log3]2. Moreover, the Packing dimension of Tμλ is log2/log3. The log2 = loge2 is that if ax = N (a >0, and a≠1), then the number x is called the logarithm of N with a base, recorded as x = logaN, read as the logarithm of N with a base, where a is called logarithm Base number, N is called true number.
作者 Muquan Yan
出处 《Journal of Applied Mathematics and Physics》 2020年第1期107-114,共8页 应用数学与应用物理(英文)
关键词 Hausdor DIMENSION Packing DIMENSION CANTOR TERNARY FUNCTION CANTOR TERNARY Set Hausdor Dimension Packing Dimension Cantor Ternary Function Cantor Ternary Set
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部