期刊文献+

Reduction of Environmental Impact of Drum Machine Washing

Reduction of Environmental Impact of Drum Machine Washing
下载PDF
导出
摘要 An improvement of efficiency of the horizontally rotating drum washing machine is possible by using a more open type of drum, essentially without suds in the annulus, by using a pump to wet the clothes during rotation and fall. Modelling and simulation are used to quantify these claims and further optimize the design of the horizontal washing machine. The flow of suds inside the deforming clothes at impact with the drum is calculated. The wash performance is shown to be largely proportional to the open perforation area in the drum. The traditional design uses 1/8 of drum area for the perforation holes. A significant reduction of water, detergent, electrical energy, and wash time, with parity in wash performance, provides a step towards a cleaner and more sustainable future. An improvement of efficiency of the horizontally rotating drum washing machine is possible by using a more open type of drum, essentially without suds in the annulus, by using a pump to wet the clothes during rotation and fall. Modelling and simulation are used to quantify these claims and further optimize the design of the horizontal washing machine. The flow of suds inside the deforming clothes at impact with the drum is calculated. The wash performance is shown to be largely proportional to the open perforation area in the drum. The traditional design uses 1/8 of drum area for the perforation holes. A significant reduction of water, detergent, electrical energy, and wash time, with parity in wash performance, provides a step towards a cleaner and more sustainable future.
机构地区 Retired
出处 《Journal of Applied Mathematics and Physics》 2020年第1期132-157,共26页 应用数学与应用物理(英文)
关键词 DRUM WASH MACHINE Design Efficiency Poroelastics DARCY Simulation Modelling Drum Wash Machine Design Efficiency Poroelastics Darcy Simulation Modelling
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部