摘要
In this paper, we construct a class of semi-implicit difference method for time fractional diffusion equations—the group explicit (GE) difference scheme, which is a difference scheme with good parallelism constructed using Saul’yev asymmetric scheme. The stability and convergence of the GE scheme of time fractional diffusion equation are analyzed by mathematical induction. Then, the theoretical analysis is verified by numerical experiments, which shows that the GE scheme is effective for solving the time fractional diffusion equation.
In this paper, we construct a class of semi-implicit difference method for time fractional diffusion equations—the group explicit (GE) difference scheme, which is a difference scheme with good parallelism constructed using Saul’yev asymmetric scheme. The stability and convergence of the GE scheme of time fractional diffusion equation are analyzed by mathematical induction. Then, the theoretical analysis is verified by numerical experiments, which shows that the GE scheme is effective for solving the time fractional diffusion equation.