期刊文献+

On Two Double Inequalities (Optimal Bounds and Sharps Bounds) for Centroidal Mean in Terms of Contraharmonic and Arithmetic Means

On Two Double Inequalities (Optimal Bounds and Sharps Bounds) for Centroidal Mean in Terms of Contraharmonic and Arithmetic Means
下载PDF
导出
摘要 This research work considers the following inequalities: <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,<i>b</i>) ≤ <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) ≤ <i>μ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>μ</i>)<em>C</em>(<i>a</i>,<i>b</i>) and <em>C</em>[<i>λ</i><em>a</em> + (1-<i>λ</i>)<em>b</em>, <i>λ</i><em>b</em> + (1-<i>λ</i>)<em>a</em>] ≤ <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) ≤ <em>C</em>[<i>μ</i><em>a</em> + (1-<i>μ</i>)<em>b</em>, <i>μ</i><em>b</em> + (1-<i>μ</i>)<em>a</em>] with <img src="Edit_ce892b1d-c056-44ea-a929-31dbcd1b0e91.bmp" alt="" /> . The researchers attempt to find an answer as to what are the best possible parameters <i>λ</i>, <i>μ</i> that (1.1) and (1.2) can be hold? The main tool is the optimization of some suitable functions that we seek to find out. By searching the best possible parameters such that (1.1) and (1.2) can be held. Firstly, we insert <em>f</em>(<i>t</i>) = <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,<i>b</i>) - <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) without the loss of generality. We assume that <i>a</i>><i>b</i> and let <img src="Edit_efa43881-9a60-44f8-a86f-d4a1057f4378.bmp" alt="" /> to determine the condition for <i>λ</i> and <i>μ</i> to become f (<i>t</i>) ≤ 0. Secondly, we insert g(<i>t</i>) = <i>μ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>μ</i>)<em>C</em>(<i>a</i>,<i>b</i>) - <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) without the loss of generality. We assume that <i>a</i>><i>b</i> and let <img src="Edit_750dddbb-1d71-45d3-be29-6da5c88ba85d.bmp" alt="" /> to determine the condition for <i>λ</i> and <i>μ</i> to become <em>g</em>(<i>t</i>) ≥ 0. This research work considers the following inequalities: <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,<i>b</i>) ≤ <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) ≤ <i>μ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>μ</i>)<em>C</em>(<i>a</i>,<i>b</i>) and <em>C</em>[<i>λ</i><em>a</em> + (1-<i>λ</i>)<em>b</em>, <i>λ</i><em>b</em> + (1-<i>λ</i>)<em>a</em>] ≤ <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) ≤ <em>C</em>[<i>μ</i><em>a</em> + (1-<i>μ</i>)<em>b</em>, <i>μ</i><em>b</em> + (1-<i>μ</i>)<em>a</em>] with <img src="Edit_ce892b1d-c056-44ea-a929-31dbcd1b0e91.bmp" alt="" /> . The researchers attempt to find an answer as to what are the best possible parameters <i>λ</i>, <i>μ</i> that (1.1) and (1.2) can be hold? The main tool is the optimization of some suitable functions that we seek to find out. By searching the best possible parameters such that (1.1) and (1.2) can be held. Firstly, we insert <em>f</em>(<i>t</i>) = <i>λ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>λ</i>)<em>C</em>(<i>a</i>,<i>b</i>) - <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) without the loss of generality. We assume that <i>a</i>><i>b</i> and let <img src="Edit_efa43881-9a60-44f8-a86f-d4a1057f4378.bmp" alt="" /> to determine the condition for <i>λ</i> and <i>μ</i> to become f (<i>t</i>) ≤ 0. Secondly, we insert g(<i>t</i>) = <i>μ</i><em>A</em>(<i>a</i>,<i>b</i>) + (1-<i>μ</i>)<em>C</em>(<i>a</i>,<i>b</i>) - <span style="text-decoration:overline;">C</span>(<i>a</i>,<i>b</i>) without the loss of generality. We assume that <i>a</i>><i>b</i> and let <img src="Edit_750dddbb-1d71-45d3-be29-6da5c88ba85d.bmp" alt="" /> to determine the condition for <i>λ</i> and <i>μ</i> to become <em>g</em>(<i>t</i>) ≥ 0.
作者 Mohammed El Mokhtar Ould El Mokhtar Hamad Alharbi Mohammed El Mokhtar Ould El Mokhtar;Hamad Alharbi(Qassim University, Al-Mulida, Qassim, KSA;Shaqra University, Shaqra, KSA)
出处 《Journal of Applied Mathematics and Physics》 2020年第6期1039-1046,共8页 应用数学与应用物理(英文)
关键词 Centroidal Mean Arithmetic Mean Contraharmonic Mean Centroidal Mean Arithmetic Mean Contraharmonic Mean
  • 相关文献

参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部