摘要
In this paper, we shall establish the connection between the group theory and quantum mechanics by showing how the group theory helps us to construct the spin operators. We look to the group generators SU (3). From these generators, new spin 1 operators will be constructed. These operators <em>S</em><sub>-<em>x</em></sub>, <em>S</em><sub>-<em>y</em></sub> and <em>S</em><sub>-<em>z</em></sub> satisfy all the properties of Pauli spin operators <em>S</em><sub>-<em>x</em></sub>, <em>S</em><sub>-<em>y</em></sub> and <em>S</em><sub>-<em>z</em></sub>. We shall discuss the notion of spin squeezing and correlations for pure spin 1 system using our spin operators <em>S</em><sub>-<em>x</em></sub>, <em>S</em><sub>-<em>y</em></sub> and <em>S</em><sub>-<em>z</em></sub>.
In this paper, we shall establish the connection between the group theory and quantum mechanics by showing how the group theory helps us to construct the spin operators. We look to the group generators SU (3). From these generators, new spin 1 operators will be constructed. These operators <em>S</em><sub>-<em>x</em></sub>, <em>S</em><sub>-<em>y</em></sub> and <em>S</em><sub>-<em>z</em></sub> satisfy all the properties of Pauli spin operators <em>S</em><sub>-<em>x</em></sub>, <em>S</em><sub>-<em>y</em></sub> and <em>S</em><sub>-<em>z</em></sub>. We shall discuss the notion of spin squeezing and correlations for pure spin 1 system using our spin operators <em>S</em><sub>-<em>x</em></sub>, <em>S</em><sub>-<em>y</em></sub> and <em>S</em><sub>-<em>z</em></sub>.