摘要
<div style="text-align:justify;"> Based on the Unsteady Reynolds-Averaged Navier-Stokes (URANS) method, this paper studied the effect of the nose shape on the aerodynamic performance when the high-speed train subjected to a windbreak transition under crosswinds. The windbreak transition generated by the irregular terrain from the flat ground to the cutting. The results showed that with the height of the front window increased from Z ? 2 to Z + 2 (the dimensionless height), the side force coefficient <em>C</em><em><sub>y</sub><sup> </sup></em>and rolling moment co-efficient <em>C</em><sub><em>mx </em></sub>increased by 26% and 27% for the head car, respectively. The flow structures around the lower front window were smoother than that around the higher front window. The flow structures in the higher front window resulted in more considerable positive pressure on the windward side (WWS) and top of the nose region. </div>
<div style="text-align:justify;"> Based on the Unsteady Reynolds-Averaged Navier-Stokes (URANS) method, this paper studied the effect of the nose shape on the aerodynamic performance when the high-speed train subjected to a windbreak transition under crosswinds. The windbreak transition generated by the irregular terrain from the flat ground to the cutting. The results showed that with the height of the front window increased from Z ? 2 to Z + 2 (the dimensionless height), the side force coefficient <em>C</em><em><sub>y</sub><sup> </sup></em>and rolling moment co-efficient <em>C</em><sub><em>mx </em></sub>increased by 26% and 27% for the head car, respectively. The flow structures around the lower front window were smoother than that around the higher front window. The flow structures in the higher front window resulted in more considerable positive pressure on the windward side (WWS) and top of the nose region. </div>
作者
Zhengwei Chen
Tanghong Liu
Wenhui Li
Zhengwei Chen;Tanghong Liu;Wenhui Li(Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha, China)