摘要
In this paper, we investigate an integrable high order nonlocal coupled Ablowitz-Kaup-Newell-Segur (AKNS) system for the first time. With the aid of Lax pair of this nonlocal system, Darboux transformation (DT) and new soliton-like solutions are obtained. Different from local equations, Darboux transformation of nonlocal systems needs to meet certain conditions. In this article, under the condition of symmetry reduction, the components of Darboux transformation need to satisfy <img src="Edit_6aa5df34-2f85-4c91-a185-17195a7f82ee.bmp" alt="" />. In order to study the dynamic information of the solutions, the images of the solutions are given.
In this paper, we investigate an integrable high order nonlocal coupled Ablowitz-Kaup-Newell-Segur (AKNS) system for the first time. With the aid of Lax pair of this nonlocal system, Darboux transformation (DT) and new soliton-like solutions are obtained. Different from local equations, Darboux transformation of nonlocal systems needs to meet certain conditions. In this article, under the condition of symmetry reduction, the components of Darboux transformation need to satisfy <img src="Edit_6aa5df34-2f85-4c91-a185-17195a7f82ee.bmp" alt="" />. In order to study the dynamic information of the solutions, the images of the solutions are given.