摘要
This article numerically investigates the 2D, steady, laminar, incompressible fluid flow, mass and heat transfer of a non-Newtonian fluid model induced by stretching surface. A Casson fluid model is considered to study the non-Newtonian behavior of the flowing fluid. The magnetic field and a porous medium are considered in the flow momentum, whereas the viscous dissipation is also taken into account in the energy transport phenomena. To see the fluid concentration, the concentration equation is used. Furthermore, the Nusselt number coefficient and skin friction are modified with the addition of nonlinear stretching and radiation parameters. With the similarity transformation, the nonlinear governing partial differential equations are transformed into a system of ordinary differential equations and then numerically solved using a fourth-order Runge-Kutta scheme with the shooting method. The relevant parameters of interest are interpreted for graphical results. The results illustrate that the fluid energy increases effectively with an increase in the Eckert number, radiation parameter, and heat source parameter, while it decreases by increasing the Prandtl number and heat sink parameter. Both the wall skin friction and the wall Nusselt number coefficient decelerate with an increase in the Casson parameter.
This article numerically investigates the 2D, steady, laminar, incompressible fluid flow, mass and heat transfer of a non-Newtonian fluid model induced by stretching surface. A Casson fluid model is considered to study the non-Newtonian behavior of the flowing fluid. The magnetic field and a porous medium are considered in the flow momentum, whereas the viscous dissipation is also taken into account in the energy transport phenomena. To see the fluid concentration, the concentration equation is used. Furthermore, the Nusselt number coefficient and skin friction are modified with the addition of nonlinear stretching and radiation parameters. With the similarity transformation, the nonlinear governing partial differential equations are transformed into a system of ordinary differential equations and then numerically solved using a fourth-order Runge-Kutta scheme with the shooting method. The relevant parameters of interest are interpreted for graphical results. The results illustrate that the fluid energy increases effectively with an increase in the Eckert number, radiation parameter, and heat source parameter, while it decreases by increasing the Prandtl number and heat sink parameter. Both the wall skin friction and the wall Nusselt number coefficient decelerate with an increase in the Casson parameter.
作者
Naveed Akbar
Sardar Muhammad Hussain
Riaz Ullah Khan
Naveed Akbar;Sardar Muhammad Hussain;Riaz Ullah Khan(School of Mathematics and Statistics, Sichuan University of Science and Engineering, Yibin, China;Department of Mathematical Sciences, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan;School of Life Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China)