摘要
In this paper, the global dynamics of a class of higher order nonlinear Kirchhoff equations under n-dimensional conditions is studied. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup associated with the initial boundary value problem are proved, and the existence of a family of exponential attractors is obtained. Then, by constructing the corresponding graph norm, the condition of a spectral interval is established when N is sufficiently large. Finally, the existence of the family of inertial manifolds is obtained.
In this paper, the global dynamics of a class of higher order nonlinear Kirchhoff equations under n-dimensional conditions is studied. Firstly, the Lipschitz property and squeezing property of the nonlinear semigroup associated with the initial boundary value problem are proved, and the existence of a family of exponential attractors is obtained. Then, by constructing the corresponding graph norm, the condition of a spectral interval is established when N is sufficiently large. Finally, the existence of the family of inertial manifolds is obtained.