期刊文献+

Explicit Algebraic Stress Model for Three-Dimensional Turbulent Buoyant Flows Derived Using Tensor Representation

Explicit Algebraic Stress Model for Three-Dimensional Turbulent Buoyant Flows Derived Using Tensor Representation
下载PDF
导出
摘要 An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant flux tensor into a two-dimensional and a three-dimensional component. The five-term basis was formed with the two-dimensional component of the buoyant flux tensor. As such, the derived EASM is limited to two-dimensional flows only. In this paper, a more general approach using a seven-term representation without partitioning the buoyant flux tensor is used to derive an EASM valid for two- and three-dimensional turbulent buoyant flows. Consequently, the basis tensors are formed with the fully three-dimensional buoyant flux tensor. The derived EASM has the two-dimensional flow as a special case. The matrices and the representation coefficients are further simplified using a four-term representation. When this four-term representation model is applied to calculate two-dimensional homogeneous buoyant flows, the results are essentially identical with those obtained previously using the two-dimensional component of the buoyant flux tensor. Therefore, the present approach leads to a more general EASM formulation that is equally valid for two- and three-dimensional turbulent buoyant flows. An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant flux tensor into a two-dimensional and a three-dimensional component. The five-term basis was formed with the two-dimensional component of the buoyant flux tensor. As such, the derived EASM is limited to two-dimensional flows only. In this paper, a more general approach using a seven-term representation without partitioning the buoyant flux tensor is used to derive an EASM valid for two- and three-dimensional turbulent buoyant flows. Consequently, the basis tensors are formed with the fully three-dimensional buoyant flux tensor. The derived EASM has the two-dimensional flow as a special case. The matrices and the representation coefficients are further simplified using a four-term representation. When this four-term representation model is applied to calculate two-dimensional homogeneous buoyant flows, the results are essentially identical with those obtained previously using the two-dimensional component of the buoyant flux tensor. Therefore, the present approach leads to a more general EASM formulation that is equally valid for two- and three-dimensional turbulent buoyant flows.
作者 Ronald M. C. So Ronald M. C. So(Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)
出处 《Journal of Applied Mathematics and Physics》 2022年第4期1167-1181,共15页 应用数学与应用物理(英文)
关键词 Explicit Algebraic Stress Model Buoyant Flows Tensor Representation Explicit Algebraic Stress Model Buoyant Flows Tensor Representation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部