摘要
Evolution of the photon gas (PG) in the Planck period is considered as a particular case of the physical vacuum (PV) hydrodynamics. Nonlocal quantum hydrodynamic equations are applied for calculation of the photon gas evolution. In general case, PG hydrodynamics contains gravitation in the explicit form. Exact analytical solutions of PG hydrodynamics are obtained. Solutions show the exponential growth of gradient values for internal energy in time and space. In comparison with phenomenological General Relativistic Theory, Nonlocal quantum hydrodynamics (NQH) does not lead to contradictions in all limit cases. Theory of physical vacuum and the theory of photonic gas are related theories. These theoretical (analytical!) results confirm the result of direct observations (Arno Alan Penzias and Robert Woodrow Wilson, Nobel Prize (1978) for their discovery of cosmic microwave background;John C. Mather and George F. Smoot. Nobel Prize (2006) for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation).
Evolution of the photon gas (PG) in the Planck period is considered as a particular case of the physical vacuum (PV) hydrodynamics. Nonlocal quantum hydrodynamic equations are applied for calculation of the photon gas evolution. In general case, PG hydrodynamics contains gravitation in the explicit form. Exact analytical solutions of PG hydrodynamics are obtained. Solutions show the exponential growth of gradient values for internal energy in time and space. In comparison with phenomenological General Relativistic Theory, Nonlocal quantum hydrodynamics (NQH) does not lead to contradictions in all limit cases. Theory of physical vacuum and the theory of photonic gas are related theories. These theoretical (analytical!) results confirm the result of direct observations (Arno Alan Penzias and Robert Woodrow Wilson, Nobel Prize (1978) for their discovery of cosmic microwave background;John C. Mather and George F. Smoot. Nobel Prize (2006) for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation).
作者
Boris V. Alexeev
Boris V. Alexeev(Russian State Technological University, Moscow, Russia)