期刊文献+

Golden Quartic Polynomial and Moebius-Ball Electron 被引量:5

Golden Quartic Polynomial and Moebius-Ball Electron
下载PDF
导出
摘要 A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic one, but is connected with the inverse of Sommerfeld’s fine-structure constant and this way again connected with the electron. From number-theoretical realities, including the reciprocity relation of the golden ratio as effective pre-calculator of nature’s creativeness, a proposed closeness to the icosahedron may point towards the structure of the electron, thought off as a single-strand compacted helically self-confined charged elemantary particle of less spherical but assumed blunted icosahedral shape generated from a high energy double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 180&#730;twisted double helix strand, where the turning points of 12 generated slings were arranged towards the vertices of a regular icosahedron, belonging to the non-centrosymmetric rotation group I532. Mathematically put, we convert the helical motion of an energy quantum into a stationary motion on a Moebius stripe structure. The radius of the ball is about the Compton radius. This chiral closed circuit Moebius ball motion profile can be tentatively thought off as the dominant quantum vortex structure of the electron, and the model may be named CEWMB (Charged Electromagnetic Wave Moebius Ball). Also the gyromagnetic factor of the electron (g<sub>e</sub> = 2.002319) can be traced back to this special structure. However, nature’s energy infinity principle would suggest a superposition with additional less dominant (secondary) structures, governed also by the golden mean. A suggestion about the possible structure of delocalized hole carriers in the superconducting state is given. A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic one, but is connected with the inverse of Sommerfeld’s fine-structure constant and this way again connected with the electron. From number-theoretical realities, including the reciprocity relation of the golden ratio as effective pre-calculator of nature’s creativeness, a proposed closeness to the icosahedron may point towards the structure of the electron, thought off as a single-strand compacted helically self-confined charged elemantary particle of less spherical but assumed blunted icosahedral shape generated from a high energy double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 180&#730;twisted double helix strand, where the turning points of 12 generated slings were arranged towards the vertices of a regular icosahedron, belonging to the non-centrosymmetric rotation group I532. Mathematically put, we convert the helical motion of an energy quantum into a stationary motion on a Moebius stripe structure. The radius of the ball is about the Compton radius. This chiral closed circuit Moebius ball motion profile can be tentatively thought off as the dominant quantum vortex structure of the electron, and the model may be named CEWMB (Charged Electromagnetic Wave Moebius Ball). Also the gyromagnetic factor of the electron (g<sub>e</sub> = 2.002319) can be traced back to this special structure. However, nature’s energy infinity principle would suggest a superposition with additional less dominant (secondary) structures, governed also by the golden mean. A suggestion about the possible structure of delocalized hole carriers in the superconducting state is given.
作者 Hans Hermann Otto Hans Hermann Otto(Materials Science and Crystallography, Clausthal University of Technology, Clausthal-Zellerfeld, Germany)
出处 《Journal of Applied Mathematics and Physics》 2022年第5期1785-1812,共28页 应用数学与应用物理(英文)
关键词 Golden Qartic Polynomial Number Theory Icosahedron Equation Golden Mean Fifth Power of the Golden Mean Moebius Ball Electron Structure CHIRALITY Fine-Structure Constant Fibonacci Number 13 Lucas Numbers SUPERCONDUCTIVITY Golden Qartic Polynomial Number Theory Icosahedron Equation Golden Mean Fifth Power of the Golden Mean Moebius Ball Electron Structure Chirality Fine-Structure Constant Fibonacci Number 13 Lucas Numbers Superconductivity
  • 相关文献

参考文献9

共引文献10

同被引文献17

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部